The one-dimensional map $1-\mathrm{Cx}^{2 \mu}$ in the large- μ limit

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L269
(http://iopscience.iop.org/0305-4470/20/5/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:24

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The one-dimensional map $1-C x^{2 \mu}$ in the large- μ limit

Jayanta K Bhattacharjee and Kalyan Banerjee
Department of Physics, Indian Institute of Technology, Kanpur 208016, India

Received 16 September 1986, in final form 14 October 1986

Abstract

We show that for period doubling bifurcations in the map $1-C x^{2 \mu}$, in the limit $\mu \gg 1, C_{x}$ (the limit point of the bifurcations) and the universal exponents α and δ have non-analytic behaviour in μ.

The onset of period doubling chaos has been studied extensively (Feigenbaum 1978, Collet and Eckmann 1980, Hu 1982) in one-dimensional maps of the form $x_{n+1}=f\left(x_{n}\right)=$ $1-C x_{n}^{2 \mu}$ for $1<2 \mu<\infty$ motivated by the universal behaviour observed for the $\mu=1$ case. Various analytic approximations have been studied by Derrida et al (1979) and more recently by Hauser et al (1984). For 2μ close to unity, a perturbation theory for calculating C_{∞} (the limit point for the successive period doubling bifurcations) and the universal constants α and δ has been devised by Derrida et al (1979). From the results of their different renormalisation group transformations, Hauser et al have made some conjectures regarding the high $-\mu(\mu \gg 1)$ behaviour of the above quantities. Here we study specifically the high- μ behaviour of C_{∞}, α and δ, and show that their dependence on μ is non-analytic for $\mu \gg 1$.

We proceed directly by finding the value C_{N} of C for the superstability of the 2^{N} cycle. This is the value of C for which 0 is a stable fixed point of $f^{2 x}(x)$. Since $f^{2^{1}}(0)=1-C_{1}$, we immediately see that C_{N} is to be obtained as the root of

$$
\begin{equation*}
0=f^{2^{*}}(0)=f^{2^{2}-2}\left(f^{2}(0)\right)=f^{2^{v}-2}\left(1-C_{N}\right) . \tag{1}
\end{equation*}
$$

We make use of the fact that C_{N} will be close to 2 and hence can be written as

$$
\begin{equation*}
C_{N}=2-\phi_{N} / 2 \mu \tag{2}
\end{equation*}
$$

where $\phi_{N} / 2 \mu \ll 1$. Making repeated use of the estimate

$$
\begin{equation*}
x^{1 / \mu} \simeq 1+\frac{1}{\mu} \ln x \tag{3}
\end{equation*}
$$

for $\mu \gg 1$, we can express ϕ_{N} as the solution of

$$
\phi_{N}=\ln \left[\frac{2 \mu C_{N}}{\ln \left[\frac{2 \mu C_{N}}{[}\right.} \begin{array}{lll}
& \ddots & \tag{4}\\
& & \left.\left.\overline{\ln \left(\frac{2 \mu C_{N}}{\ln C_{N}}\right)}\right]\right]
\end{array}\right]
$$

where the number of \log factor is $2^{N}-2$. The derivation of the above equation can be seen as follows. We take $N=2$ and for C_{2} find from equation (1),

$$
\begin{align*}
0 & =f^{(2)}\left(1-C_{2}\right)=1-C_{2}\left\{f\left(1-C_{2}\right)\right\}^{2 \mu} \\
& =1-C_{2}\left\{1-C_{2}\left(1-C_{2}\right)^{2 \mu}\right\}^{2 \mu} \tag{5}
\end{align*}
$$

whence,

$$
\begin{equation*}
1-C_{2}\left(1-C_{2}\right)^{2 \mu}=\left(\frac{1}{C_{2}}\right)^{\mu / 2} \simeq 1-\frac{1}{2 \mu} \ln C_{2} \tag{6}
\end{equation*}
$$

making use of equation (3). This leads to

$$
C_{2}-1=\left(\frac{1}{2 \mu C_{2}} \ln C_{2}\right)^{\mu / 2} \simeq 1+\frac{1}{2 \mu} \ln \left(\frac{1}{2} \mu C_{2} \ln C_{2}\right)
$$

or

$$
\begin{equation*}
\phi_{2}=\frac{1}{2 \mu} \ln \left(\frac{2 \mu C_{2}}{\ln C_{2}}\right) \tag{7}
\end{equation*}
$$

where $C_{2}=2-\phi_{2} / 2 \mu$. Carrying out this procedure 2^{N-2} times leads to equation (4).
The accumulation point of the C_{N} is the accumulation point of the period doubling bifurcations and being $C_{\infty}=\operatorname{Lim}_{N \rightarrow \infty} C_{N}$ can be written as

$$
\begin{equation*}
C_{x}=2-\phi / 2 \mu \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi=\ln \left(\frac{4 \mu}{\phi}\right) \tag{9}
\end{equation*}
$$

is the large- μ fixed point of the recursion relation for ϕ_{N} which follows from equation (4). In table 1 we show the comparison between equations (8) and (9) and the exact (numerically determined) C_{x}. The agreement for large μ is good to within 1 in 10^{3}. The non-analytic behaviour in μ is evident from equations (8) and (9) which would give the lowest order approximation to C_{x} as

$$
\begin{equation*}
C_{x}=2-\ln 4 \mu / 2 \mu . \tag{10}
\end{equation*}
$$

The $\mu^{-1} \ln \mu$ term is the source of the non-analytic behaviour of C_{∞} and, in turn, of the universal constants α and δ.

Table 1.

2μ	$C_{x}=2-\frac{\phi}{2 \mu}$	C_{x} exact	$\alpha=\left(1-\frac{\phi}{2 \mu}\right)^{-1}$	$\delta=\alpha^{2 \mu}-\alpha$	δ exact
6	1.6895	1.68326	1.45	7.85	9.2997
10	1.7795	1.77264	1.287	11.03	12.376
30	1.9000	$1.89677 \dagger$	1.111	22.48	20.5271^{\dagger}
100	1.9607	1.95926	1.045	54	29.0510^{\dagger}

[^0]We turn now to a determination of α. We know from the standard definitions that

$$
\begin{equation*}
\alpha=\lim _{N \rightarrow \infty}\left\{-\left[f^{2^{N}}(0)\right]^{-1 / N}\right\} . \tag{11}
\end{equation*}
$$

The lowest order approximation ($N=1$) gives

$$
\begin{equation*}
\alpha=\left(C_{x}-1\right)^{-1}=(1-\phi / 2 \mu)^{-1} \simeq 1+(\phi / 2 \mu) . \tag{12}
\end{equation*}
$$

Once again we see that as μ increases α approaches 1 in a non-analytic fashion because of the logarithmic terms in ϕ. The convergence of equation (12) for large μ is swift, so much so that $N=1$ assures 1% accuracy. To improve on that we note that if we define $(-\alpha)^{-N}=f^{2^{N}}(0)$, then α_{N} satisfies a recursion relation

$$
\begin{equation*}
\left(-\alpha_{N+1}\right)^{-(N+1)}=f^{2^{N}}\left(\left(1 /-\alpha_{N}\right)^{N}\right) \tag{13}
\end{equation*}
$$

and α is obtained as a fixed point of this relation as $N \rightarrow \infty$. For $N=1$, the fixed point relation is

$$
\begin{align*}
\alpha^{-2} & =f^{2}(1 / \alpha) \\
& =1-C_{\infty}\left(1-\frac{C_{\infty}}{\alpha^{2} \mu}\right)^{2 \mu} \tag{14}
\end{align*}
$$

leading to the same asymptotic solution as that given in equation (12). Thus the lowest order prescription for α and the lowest order fixed point value of α lead to the same result showing the relative insensitivity of α to the different techniques of evaluation for $\mu \gg 1$. At this point we note that Eckmann and Wittwer (1985) have determined the asymptotic form ($\mu \rightarrow \infty$)

$$
\begin{equation*}
\alpha \simeq 1+\ln \left(\alpha^{2 \mu}\right) / \mu \tag{15}
\end{equation*}
$$

with a computer assisted proof. They now assume on the basis of numerical evidence that $\lim \alpha^{2 \mu}$ is finite and nearly equal to 30 for $\mu \rightarrow \infty$. This leads to

$$
\begin{equation*}
\alpha \simeq 1-\ln (1033) / \mu \tag{16}
\end{equation*}
$$

In the form of equation (15), their asymptotic form is consistent with our equations (12) and (14).

Finally we determine δ. For $\mu \gg 1$, as noted by Feigenbaum (1978), δ is given accurately by the prescription

$$
\begin{equation*}
\delta=\alpha^{2 \mu}-\alpha . \tag{17}
\end{equation*}
$$

Using equation (12) for α and taking the large $-\mu$ limit, we find that

$$
\begin{equation*}
\delta=\mathrm{e}^{\phi}-1 \tag{18}
\end{equation*}
$$

implying an asymptotic form

$$
\begin{equation*}
\delta \approx \frac{4 \mu}{\ln 4 \mu} \tag{19}
\end{equation*}
$$

The values of δ computed from equation (18) are also shown in table 1 . We note that the agreement with numerical values (Derrida et al 1979, Hauser et al 1984), although good, is less impressive than that for C_{x}. The reason lies in the fact that the form of equation (18) magnifies the error in the determination of δ from α. It should be emphasised that while the large- μ form of C_{x} is exact, those for α and δ are not. Thus while equation (12) is a good analytic estimate of α for $2 \mu \gg 1$, taking the limit of the sequence in equation (11) might alter the asymptotic form.

References

Collet P and Eckmann J P 1980 Iterated Maps on an Interval as Dynamical Systems (Boston: Birkhauser)
Derrida B, Gervois A and Pomeau Y 1979 J. Phys. A: Math. Gen. 12269
Eckmann J P and Wittwer P 1985 Lecture Notes in Physics vol 227 (Berlin: Springer)
Feigenbaum M J 1978 J. Stat. Phys. 1925
Hauser P R, Tsallis C and Curado E M F 1984 Phys. Rev. A 302074
Hu B 1982 Phys. Rep. 91233

[^0]: \dagger These values are the result of the most accurate version of the renormalisation group calculation of Hauser et al.

