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Abstract. We show that for period doubling bifurcations in the m a p  1 - CX’~’, in the limit 
p >> 1, C,  ( the limit point of the bifurcations) and the universal exponents a and 8 have 
non-analytic behaviour in p. 

The onset of period doubling chaos has been studied extensively (Feigenbaum 1978, 
Collet and Eckmann 1980, Hu 1982) in one-dimensional maps ofthe form x,+, = . f ( x , )  = 
1 - Cx? for 1 < 2p < a3 motivated by the universal behaviour observed for the p = 1 
case. Various analytic approximations have been studied by Derrida er a1 (1979) and 
more recently by Hauser er a1 (1984). For 2p close to unity, a perturbation theory for 
calculating C, (the limit point for the successive period doubling bifurcations) and 
the universal constants a and 6 has been devised by Derrida er a1 (1979). From the 
results of their different renormalisation group trahsformations, Hauser er a1 have 
made some conjectures regarding the high-p ( p  >> 1 )  behaviour of the above quantities. 
Here we study specifically the high-p behaviour of C,, (Y and 8, and show that their 
dependence on p is non-analytic for p >> 1. 

We proceed directly by finding the value CN of C for the superstability of the 2 N  
cycle. This is the value of C for which 0 is a stable fixed point of f 2 ‘ ( x ) .  Since 
f 2 ’ ( 0 )  = 1 - C,, we immediately see that CN is to be obtained as the root of 

(1) o = f 2 ’ ( o )  = f 2 C - 2 (  f *(o)) = f 2 ’ - 2 (  1 - C N ) .  

We make use of the fact that C ,  will be close to 2 and hence can be written as 

C N  = 2 -  + N / 2 p  ( 2 )  

where +N/2p << 1 .  Making repeated use of the estimate 

1 
P 

for p >> 1, we can express d N  as the solution of 

x l / r  1 + - l n x  ( 3 )  

(4) 
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where the number of log factor is 2 N  - 2 .  The derivation of the above equation can 
be seen as follows. We take N = 2 and for Cz find from equation ( l ) ,  

0 = f ' 2 ' (  1 - CJ = 1 - C,{f( 1 - C,)}*P 

= 1 - C2{ 1 - C,( 1 - C 2 ) 2 @ } 2 P  ( 5 )  

whence. 

making use of equation (3). This leads to 

or 

where C ,  = 2 - &/2p. Carrying out this procedure 2 N - 2  times leads to equation (4). 
The accumulation point of the CN is the accumulation point of the period doubling 

bifurcations and being C, = LimN+, CN can be written as 

c, = 2 - 4 / 2 p  (8) 

where 

is the large-p fixed point of the recursion relation for 4N which follows from equation 
(4). In table 1 we show the comparison between equations (8) and (9) and the exact 
(numerically determined) C,. The agreement for large p is good to within 1 in lo3. 
The non-analytic behaviour in p is evident from equations (8) and (9) which would 
give the lowest order approximation to C, as 

(10) C ,  = 2 -In 4p12p. 

The p-' In p 
the universal 

term is the source of the non-analytic behaviour of C, and, in turn, of 
constants a and S. 

Table 1. 

6 1.6895 1.683 26 1.45 7.85 9.2997 
I O  1.7795 1.772 64 1.287 11.03 12.376 

20.5271t 30 1.9000 1.89677: 1 . 1 1 1  22.48 
100 1.9607 1.959 26 1.045 54 29.0510: 

+ These values are the result of the most accurate version of the renormalisation group 
calculation of Hauser er al. 
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We turn now to a determination of a. We know from the standard definitions that 

(11) a = N lim -0c { - [ ~ ” ( o ) I - ’ ” } .  

The lowest order approximation ( N  = 1) gives 

a = ( C ,  - l ) - I  = (1 - 4 / 2 p  ) - I  = 1 + ( 4 / 2 p ) .  (12) 

Once again we see that as p increases a approaches 1 in a non-analytic fashion because 
of the logarithmic terms in 4. The convergence of equation (12) for large p is swift, 
so much so that N = 1 assures 1% accuracy. To improve on that we note that if we 
define ( -  a 

(13) 

and a is obtained as a fixed point of this relation as N -+ oc. For N = 1, the fixed point 
relation is 

=f2’ (O) ,  then aN satisfies a recursion relation 
( -  a N + , ) - ( N + I )  - 2’ -f ( ( I /  - a N I N )  

. -’=f’(l / .)  

=1-c, 1- -  ( 
leading to the same asymptotic solution as that given in equation (12). Thus the lowest 
order prescription for a and the lowest order fixed point value of cy lead to the same 
result showing the relative insensitivity of a to the different techniques of evaluation 
for p >> 1. At this point we note that Eckmann and Wittwer (1985) have determined 
the asymptotic form ( p  -+ CO) 

a = 1 + 1 n ( a Z r ) / p  (15 )  
with a computer assisted proof. They now assume on the basis of numerical evidence 
that lim azr  is finite and nearly equal to 30 for p +CO. This leads to 

(16) 

In the form of equation (15), their asymptotic form is consistent with our equations 
(12) and (14). 

Finally we determine 6. For p >> 1 ,  as noted by Feigenbaum (1978), 6 is given 
accurately by the prescription 

6 = c y 2 i  -a .  (17) 

a = 1 -In( 1033)/p. 

Using equation (12) for a and taking the large-p limit, we find that 

6 = e 4 - l  (18) 
implying an  asymptotic form 

The values of 6 computed from equation (18) are also shown in table 1. We note that 
the agreement with numerical values (Derrida et a /  1979, Hauser et a1 1984), although 
good, is less impressive than that for C,. The reason lies in the fact that the form of 
equation (18 )  magnifies the error in the determination of S from a. It should be 
emphasised that while the large-p form of C, is exact, those for cy and 6 are not. 
Thus while equation (12)  is a good analytic estimate of a for 2p >> 1, taking the limit 
of the sequence in equation (1 1) might alter the asymptotic form. 
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